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Survival probability for brittle isotropic foams

under multiaxial loading
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Department of Civil Engineering, National Cheng Kung University, Tainan, 70101 Taiwan

The cell-strut modulus of rupture for brittle isotropic foams is not a constant, depending on
the volume and Weibull modulus of solid cell struts. In this paper, the existing model
describing the failure stresses for isotropic foams under multiaxial loading is modified to
take into account the effect of variability in the cell-strut modulus of rupture. As a result, the
failure envelopes of brittle foams with different prescribed survival probability and Weibull
modulus can be generated and presented. Results suggest that the effects of cell size,
Weibull modulus and prescribed survival probability on the failure envelopes of brittle
foams are significant. C© 2000 Kluwer Academic Publishers

1. Introduction
Ceramic foams are increasingly being used as light-
weight cores in sandwich structures, especially for
load-bearing components, because of their high melt-
ing temperature and low thermal conductivity. How-
ever, pre-existing flaws within ceramic foams reduce
their loading capacity and cause strength variability
in both tension and compression. Ceramic foams in
many engineering applications are subjected to multi-
axial loading. Various failure mechanisms might occur
for ceramic foams under multiaxial loading, depending
on the properties of solid cell struts. Accounting for
the cell-strut strength variability, ceramic foams could
have different failure mechanisms and resulting failure
envelopes. The existing model for the failure envelopes
of foams assumes that the cell struts have a constant
modulus of rupture. Here, we modify the model to ac-
count for cell struts of variable strength. The analysis
is based on the results on survival probability for brittle
honeycombs under in-plane biaxial loading by Huang
and Chou [1]. The variability in the cell-strut modulus
of rupture is accounted for using a Weibull analysis in
a manner similar to that used for brittle honeycombs.

Gibson and Ashby [2] verified that bending mo-
ment dominates cell-strut deformation in foams and
thus proposed a cell-strut-bending model to analyze
the mechanical properties of foams. For foams in uni-
axial compression, cell struts might fail either by elas-
tic buckling or by crushing [3–6]. The uniaxial com-
pressive crushing strength of foams was described well
by the cell-strut-bending model [2] if the cell-strut
modulus of rupture is assumed to be constant. For
foams in uniaxial tension, the tensile fracture strength is
much smaller than the compressive crushing strength,
caused by the propagation of pre-existing cracks. Maiti
et al.[7] found that the tensile fracture strength of foams
depends on cell size, relative density, and cell-strut
modulus of rupture. Morganet al. [8] observed that
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the tensile fracture strength of glass foams increases
with the square root of cell size. Meanwhile, Brezny
and Green [9] experimentally measured the cell size
effect on the fracture toughness of reticulated carbon
foams.

By assuming a constant cell-strut modulus of rupture,
Gibsonet al. [10] developed equations describing the
failure surfaces for foams under multiaxial loads and
Huang and Lin [11] analyzed the mixed mode fracture
criterion for foams. In practice, the cell-strut modulus
of rupture of brittle foams depends on the volume and
Weibull modulus of solid cell struts. The strength vari-
ability in the cell-strut modulus of rupture should be
taken into account in developing the failure envelopes
for brittle foams under multiaxial loading. The survival
probability of a brittle solid subjected to a non-uniform
tensile stress can be calculated from a Weibull statis-
tic analysis[12–14]. Huang and Gibson [15] verified
that the cell-strut modulus of rupture of brittle retic-
ulated vitreous carbon foams was described well by
the Weibull statistic analysis. In the previous paper [1],
we reanalyzed the failure envelopes of brittle honey-
combs assuming that the cell-wall modulus of rupture
followed a Weibull distribution. We now apply simi-
lar ideas to the analysis of failure envelopes of brittle
isotropic foams under multiaxial loading.

2. Strength variability of brittle cell struts
A three-dimensional, open cubic cell of isotropic foams
having square cell struts with a cross-sectional area oft2

and a cell length̀ is shown in Fig. 1. When the foam is
subjected to remote multiaxial stressesσ ∗1 , σ ∗2 andσ ∗3 ,
solid cell struts mainly suffer axial force or bending
moment. For a brittle solid cell strut with a volume of
V subjected to a non-uniform tensile stress, the failure
probability of the cell strut can be calculated from the
Weibull statistic analysis [12]:
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Figure 1 A three-dimensional, open cubic cell of isotropic foams with
a cell strut thicknesst and a cell length̀ .

Pf = 1− Ps = 1− exp

[
−
∫

V

(
σs

σ0

)m dV

V0

]
(1)

HerePs is the survival probability,V0 is the unit volume,
σs is the tensile stress acting at any point within the
cell strut,σ0 is a scale parameter andm is the Weibull
modulus. Note that only tensile stresses within the cell
strut are taken into account in calculating the failure
probability.

Owing to the nature of microstructure in foams, the
loading configuration of individual cell strut is very
complicated and its corresponding stress distribution is
difficult to analyze. Nevertheless, the tensile stress at
any point can be expressed in terms of the maximum
tensile stress within the solid cell strut,σmax:

σs = Hσmax (2)

Here H depends on the loading configuration of the
cell strut. The survival probability of the solid cell-strut
beam can be obtained by substituting Equation 2 into 1,
giving:

Ps = exp
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−
∫
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(
σs

σ0

)m dV

V0

]

= exp

[
−
∫

V

(
Hσmax

σ0

)m dV

V0

]

= exp

[
−
(
σmax

σ0

)m ∫
V

Hm dV

V0

]
(3)

When the maximum tensile stress reaches the cell-
strut modulus of rupture,σfs, failure occurs. By setting
σmax= σfs in equation (3), the survival probability of

the solid cell-strut beam becomes:

Ps = exp

[
−
(
σfs

σ0

)m ∫
V

Hm dV

V0

]
(4)

Therefore, the corresponding cell-strut modulus of rup-
ture for a prescribed survival probability is found to be:

σfs =
[

log

(
1

Ps

)]1/m(∫
V

Hm dV

V0

)−1/m

σ0

(5)

=
[

log

(
1

Ps

)]1/m(V0

V

)1/m

f (m)σ0

Here f (m) is a function of the Weibull modulus. From
Equation 5, it is clear that the cell-strut modulus of rup-
ture in brittle foams is not a constant, depending on
the cell geometry, loading condition and material pa-
rameters of solid cell struts, and the prescribed survival
probability.

The mean modulus of rupture of solid cell struts can
be calculated from Equation 4:

σfs =
∫ ∞

0
Ps dσfs

=
∫ ∞

0
exp

[
−
(
σfs

σ0

)m ∫
V

Hm dV

V0

]
dσfs

= σ0

(∫
V

Hm dV

V0

)−1/m

0

(
1+ 1

m

)
(6)

Here0(1+m−1) is the gamma function. Again, the
mean cell- strut modulus of rupture depends on cell ge-
ometry and loading condition of solid cell struts. The
mean cell-strut modulus of rupture can be further ex-
pressed as:

σfs = σ0

(
V0

V

)1/m

0

(
1+ 1

m

)
f (m) (7)

At the same time, the ratio of the cell-strut modulus of
rupture for a prescribed survival probability and the
mean cell-strut modulus of rupture can be obtained
from Equations 5 and 7, regardless of the cell geometry
and loading condition within solid cell struts:

σfs

σfs
=
[

log
(

1
Ps

)]1/m

0
(
1+ 1

m

) (8)

It is obvious that the ratio depends on the prescribed
survival probability and the Weibull modulus of solid
cell struts.

3. Survival probability of brittle isotropic
foams

The existing model for describing the failure envelopes
of foams under multiaxial loading [10] will be modified
to take into account the effect of strength variability in
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brittle cell struts. For brittle isotropic foams under mul-
tiaxial loading, brittle crushing, fast brittle fracture and
elastic buckling are the three possible failure modes
and will be considered here. Since the cell-strut mod-
ulus of rupture is not constant, the prescribed survival
probability and the Weibull modulus of solid cell struts,
presumably, will change the failure envelopes of brittle
foams.

3.1. Brittle crushing
When a brittle isotropic foam subjected to a remote uni-
axial compressive stress,σ ∗1 , the induced bending mo-
ment exerted on an individual solid cell strut is found to
beMs∝ σ ∗1 `3 by using dimensional argument analysis.
Brittle crushing occurs when the critical skin stress of
the cell strut, which isσs∝Ms/t3 from the elementary
mechanics of materials, reaches the cell-strut modulus
of rupture. Since the relative density of the foam (the
density of the foam,ρ∗, divided by that of the solid
from which it is made,ρs) is proportional tot2/`2, the
uniaxial crushing strength can be expressed as:

σ ∗cr ∝
t3

`3
σfs = C1

(
ρ∗

ρs

)3/2

σfs (9)

WhereC1 is a microstructure coefficient and was found
to be 0.2 by Gibsonet al. [10]. The uniaxial crushing
strength of brittle foams for a prescribed survival proba-
bility is thus obtained by substituting Equation 8 into 9:

σ ∗cr = C1

(
ρ∗

ρs

)3/2

σfs

[
log

(
1
Ps

)]1/m

0
(
1+ 1

m

) (10)

For brittle foams under multiaxial loading, the induced
axial force and bending moment are taken into account
in calculating the critical skin stress within solid cell
struts; the effect of shear force is negligible. Brittle
crushing occurs when the critical skin tensile stress ex-
ceeds the cell-strut modulus of rupture for a given sur-
vival probability. Hence, the maximum tensile stress
resulting from bending moment is:

σfs− σas= Mst/2

Is
= 6Ms

t3
(11)

Hereσas is the axial stress andIs is the second moment
of area of individual solid cell strut. Note that the
bending moment can be either positive or negative.
Multiaxial loads with the three principal stresses
of σ ∗1 , σ ∗2 and σ ∗3 , can be decomposed into a hy-
drostatic stress state withσ ∗m= (σ ∗1 + σ ∗2 + σ ∗3 )/3
and a deviatoric stress state withσ ∗d =√

1/2[(σ ∗1 − σ ∗2 )2+ (σ ∗2 − σ ∗3 )2+ (σ ∗3 − σ ∗1 )2]. Solid
cell struts within foams deform axially under a
hydrostatic stress state while they suffer bending under
a deviatoric stress state.

At first, we consider a hydrostatic stress state of
σ ∗1 = σ ∗2 = σ ∗3 . The resulting axial stress exerted on in-
dividual solid cell strut can be expressed as:

σas= 3σ ∗m
ρ∗/ρs

(12)

Only one-third of solid cell struts carry axial force ap-
plied in any one direction, giving a constant 3 in the
above equation. For brittle foams under a deviatoric
stress state, the induced bending moment can be found
using dimensional argument analysis:

Ms ∝ `3σ ∗d ∝ `3

×
√

1

2

[(
σ ∗1 − σ ∗2

)2+ (σ ∗2 − σ ∗3 )2+ (σ ∗3 − σ ∗1 )2]
(13)

From Equations 11–13, the failure stresses for brittle
crushing are:

σ ∗d
σfs
= ±γ

(
ρ∗

ρs

)3/2[
1− 3σ ∗m

σfs(ρ∗/ρs)

]
(14)

The constantγ can be determined from a simple uni-
axial compression by settingσ ∗m= σ ∗1 /3 andσ ∗d = σ ∗1
in the above equation;γ is roughly equal to 0.2 if the
relative density of foams is less than 0.25. Therefore,
the failure stresses for brittle crushing become:

σ ∗d
σfs
= ±0.2

(
ρ∗

ρs

)3/2[
1− 3σ ∗m

σfs(ρ∗/ρs)

]
(15)

Since the cell-strut modulus of rupture is not a constant,
the failure stresses for brittle crushing can be expressed
in terms of the mean cell-strut modulus of rupture, the
Weibull modulus and the prescribed survival probabil-
ity from Equation 8:

σ ∗d
σfs

0
(
1+ 1

m

)
[

log
(

1
Ps

)]1/m = ±0.2

(
ρ∗

ρs

)3/2

×

1− 3σ ∗m
σfs

(
ρ∗
ρs

) 0
(
1+ 1

m

)
[

log
(

1
Ps

)]1/m

 (16)

From Equation 9, the failure stresses can be further ex-
pressed in terms of the mean uniaxial crushing strength,
σ ∗cr :

±σ
∗
d

σfs
± 0.6

(
ρ∗

ρs

)1/2
σ ∗m
σcr

0
(
1+ 1

m

)
[

log
(

1
Ps

)]1/m = 1 (17)

It is clear that the failure stresses for brittle crushing
depend on the relative density of foams, the Weibull
modulus of solid cell struts, and the prescribed survival
probability.

3.2. Fast brittle fracture
Figure 2 illustrates a brittle isotropic foam with a central
macro-crack of lengthc, subjected to multiaxial loads.
Using dimensional argument analysis, Maitiet al. [7]
were able to derive the expression for mode I fracture
toughness of foams as a function of cell size, relative
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Figure 2 A brittle foam with a central macrocrackcunder remote triaxial
loading.

density and the modulus of rupture of solid cell struts:

K ∗IC = C2σfs

√
π`

(
ρ∗

ρs

)3/2

(18)

Again, the cell-strut modulus of rupture is assumed to
be constant and the microstructure coefficientC2= 0.2
suggested by Gibsonet al. [10].

The tensile fracture strength of the brittle foam will
be much lower than its brittle crushing strength due to
the stress concentration effect around the macrocrack
tip. When the critical skin stress within the first un-
broken solid cell strut exceeds the cell-strut modulus of
rupture for a prescribed survival probability, the macro-
crack advances, giving the tensile fracture strength of
the foam,σ ∗fr :

σ ∗fr =
K ∗IC√
πc
= 0.2

√
`

c

(
ρ∗

ρs

)3/2

σfs

= 0.2

√
`

c

(
ρ∗

ρs

)3/2

σfs

[
log

(
1
Ps

)]1/m

0
(
1+ 1

m

)
(19)

Equations 8 and 18 have been used in the above
equation. The tensile fracture strength depends on the
Weibull modulus, cell size, relative density of the foam,
and the prescribed survival probability. Meanwhile, the
tensile fracture strength can be further expressed in
terms of the mean brittle crushing strength from Equa-
tion 9:

σ ∗fr =
√
`

c
σ ∗cr =

√
`

c
σ ∗cr

[
log

(
1
Ps

)]1/m

0
(
1+ 1

m

) (20)

Under a multiaxial stress state ofσ ∗1 , σ ∗2 andσ ∗3 , fast
brittle fracture occurs when the maximum tensile stress
exceeds the tensile fracture strength of the brittle foam:

Max
(
σ ∗1 , σ

∗
2 , σ

∗
3

) = σ ∗fr = √`cσ ∗cr

[
log

(
1
Ps

)]1/m

0
(
1+ 1

m

)
(21)

The failure stresses for fast brittle fracture depend on
the Weibull modulus, cell size, macrocrack length and
mean brittle crushing strength of brittle foams, and the
prescribed survival probability.

3.3. Elastic buckling
Brittle foams under either uniaxial or multiaxial com-
pressive loading might fail due to the bucking of one set
of cell struts loaded axially up to their Euler buckling
load. The remote triaxial stresses produce an axial load
on individual cell strut. When the axial load reaches the
Euler buckling load, elastic buckling occurs, giving the
elastic buckling strength of the foams:

σ ∗el =
n2π2EsIs

`4
= n2π2Est4

12̀ 4
= n2π2Es

12

(
ρ∗

ρs

)2

(22)

HereEs is the elastic modulus of solid cell struts. End
constraint factorn2 depends on stress state and buckling
mode; Gibsonet al. [10] presented a full analysis for
a possible buckling mode and the corresponding end
constraint factor for various multiaxial stress states.

Since the Euler buckling load depends only on the
elastic modulus and slenderness of individual cell strut,
the elastic buckling strength of brittle foams will not be
affected by the Weibull modulus of solid cell struts and
the prescribed survival probability. The end constraint
factors for brittle foams under multiaxial loading sug-
gested by Gibsonet al.[10] are listed in Table I and will
be utilized to construct the failure envelopes for brittle
foams.

4. Discussion
From Equation 5, it is known that the cell-strut modulus
of rupture in brittle foams depends on the cell geome-
try, the Weibull modulus of solid cell struts, and the pre-
scribed survival probability. Consider two brittle foams
made from the same solid material but with different
cell size, relative density and prescribed survival prob-
ability; `1, ρ

∗
1/ρs and Ps,1 for foam 1 while`2, ρ

∗
2/ρs

and Ps,2 for foam 2. From Equation 5, the ratio of the
cell-strut moduli of rupture for the two foams is found
to be:

σfs,1

σfs,2
=
[(

`2t2
2

`1t2
1

)
log

(
Ps,2

Ps,1

)]1/m

=
[(

`2

`1

)3
(
ρ∗2
/
ρs

ρ∗1
/
ρs

)
log

(
Ps,2

Ps,1

)]1/m

(23)

TABLE I Endconstraint factorn2 for elastic buckling of foams under
multiaxial loads [10]

Load condition n2 σ ∗/σ ∗el

Uniaxial compression,σ ∗1 = σ ∗, σ ∗2 = σ ∗3 = 0 0.41 1.00
Biaxial compression,σ ∗1 = 0, σ ∗2 = σ ∗3 = σ ∗ 0.36 0.88
Hydrostatic compression,σ ∗1 = σ ∗2 = σ ∗3 = σ ∗ 0.34 0.83
σ ∗1 = σ ∗, σ ∗2 = σ ∗3 =−σ ∗/8 0.42 1.02
σ ∗1 =−σ ∗/2, σ ∗2 = σ ∗3 = σ ∗ 0.37 0.90
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It is noted that the cell-strut modulus of rupture in-
creases with decreasing cell size, relative density and
prescribed survival probability. The ratio in Equation 23
becomes smaller for a larger Weibull modulus. Also,
Equation 23 indicates that the cell-strut modulus of
rupture is a constant regardless of prescribed survival
probability, cell size and relative density as the Weibull
modulus approaching infinity for ductile foams.

From Equations 17, 21 and 22, it is found that the fail-
ure stresses for brittle crushing and fast brittle fracture
in brittle foams are affected by cell size, relative density,
Weibull modulus and prescribed survival probability
while those for elastic buckling are only influenced by
relative density. To investigate the effect of prescribed
survival probability on the failure surfaces for brittle
foams under multiaxial loading, the Weibull modulus
is assumed to be constant and three different prescribed
survival probabilities of 0.2, 0.5 and 0.8 are considered
here. The resulting failure envelopes for axisymmetric
loading ofσ ∗2 = σ ∗3 are plotted in Figs 3–6 for brittle
foams with a Weibull modulus of 3, 6, 9 and 100, re-
spectively. In the figures, the material parameters of
brittle foams are assumed to be:c/`= 4, ρ∗/ρs= 0.1
andσfs/Es= 0.01. From Figs 3–5, it is seen that the
area contained within the failure envelope for brittle
foams decreases with increasing prescribed survival
probability. For brittle foams with a higher prescribed
survival probability, the cell-strut modulus of rupture
will be smaller. As a result of that, the brittle foams
will be more likely to fail, giving a smaller area con-
tained within the failure envelope.

From Figs 3–6, it is also seen that the difference be-
tween the areas contained within the failure envelopes
for various survival probabilities becomes smaller as
the Weibull modulus increases. That is, the failure
stresses for foams with same cell size and relative den-
sity but with a smaller Weibull modulus will scatter
more widely than those with a larger Weibull modulus.
It is expected that the failure envelopes will come close

Figure 3 Failure envelopes for brittle foams withm= 3 and various
prescribed survival probabilities of 0.2, 0.5 and 0.8.

Figure 4 Failure envelopes for brittle foams withm= 6 and various
prescribed survival probabilities of 0.2, 0.5 and 0.8.

Figure 5 Failure envelopes for brittle foams withm= 9 and various
prescribed survival probabilities of 0.2, 0.5 and 0.8.

to a set of intersecting lines when the Weibull modulus
becomes much larger as shown in Fig. 6.

Since the cell-strut modulus of rupture depends on
its volume, the failure stresses are different for brittle
foams with various cell sizes even though they have
same cell geometry and relative density. Consider two
brittle foams having the same relative density, Weibull
modulus and prescribed survival probability but dif-
ferent cell size; for instance,ρ∗1/ρs= ρ∗2/ρs= ρ∗/ρs,
m1=m2=m and Ps,1= Ps,2 but `1 6= `2. The failure
stresses for brittle crushing of foam 1 can be expressed
in terms of the uniaxial brittle crushing strength of
foam 2:

± σd,1

σ ∗cr,2

+ 0.6

(
ρ∗

ρs

)1/2
σm,1

σ ∗cr,2

=
(
`1

`2

)−3/m

(24)
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Figure 6 Failure envelopes for brittle foams withm= 100 and various
prescribed survival probabilities of 0.2, 0.5 and 0.8. The failure envelopes
for various survival probabilities come closer to a set of intersecting lines
as suggested by the existing model [10].

Meanwhile, if c1= c2= c andc/`2= c/`, the failure
stresses for fast brittle fracture of foam 1 can also be
rewritten as:

Max
(
σ ∗1 , σ

∗
2 , σ

∗
3

) = σ ∗fr,1 = (`1

`2

) 1
2− 3

m

σ ∗fr,2

=
(
`1

`2

) 1
2− 3

m

√
`

c
σ ∗cr,2 (25)

The Euler buckling load of solid cell struts depends
only on the relative density instead of the cell size of
brittle foams. As a result, the failure stresses for elastic
buckling of brittle foams exhibit no cell size effect.

Figure 7 Failure envelopes for brittle foams withm= 3 and different
cell sizes. The failure stresses for fast brittle fracture and brittle crushing
are higher for brittle foams with a smaller cell size.

Figure 8 Failure envelopes for brittle foams withm= 6 and different cell
sizes. Brittle foams with a smaller cell size have higher failure stresses
for brittle crushing. There is no cell size effect for both elastic buckling
and fast brittle fracture.

Figure 9 Failure envelopes for brittle foams withm= 9 and different cell
sizes. Brittle foams with a smaller cell size have higher failure stresses for
brittle crushing but lower failure stresses for fast brittle fracture. There
is no cell size effect for elastic buckling.

The failure surfaces for brittle foams with different
cell sizes are plotted in Figs 7–10 for various Weibull
moduli. In the figures, the cell size ratiò1/`2 is set to
be 0.1, 1.0 and 10, and the cell geometry and material
properties of the two foams are assumed to bec/`= 4,
ρ∗/ρs= 0.1 andσfs/Es= 0.01. It is seen that the failure
stresses for brittle crushing in foams with a smaller cell
size is higher than those with a larger cell size. How-
ever, the effect of cell size on the failure surfaces of
brittle foams decreases as Weibull modulus increases.
Cell size effect is insignificant if Weibull modulus be-
comes much larger, for instancem= 100 in Fig. 10, as
expected for ductile foams.
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Figure 10 Failure envelopes for brittle foams withm= 100 and different
cell sizes. The cell size effect on brittle crushing and elastic buckling is
negligible.

From Equation 25, it is found that the failure sur-
faces for fast brittle fracture in brittle foams depend
on the Weibull modulus of solid cell struts. The failure
stresses for fast brittle fracture increase with decreas-
ing cell size ifm is smaller than 6; Fig. 7 shows the
trend form= 3. Whenm= 6, there is no cell size ef-
fect on the failure surfaces for fast brittle fracture as
shown in Fig. 8. But, the failure stresses for fast brittle
fracture increases with increasing cell size for brittle
foams withm> 6 as shown in Fig. 9 form= 9. It is
expected that the failure stresses for fast brittle fracture
in ductile foams increases with the square root of their
cell size as illustrated in Fig. 10 form= 100.

5. Conclusions
The Weibull analysis suggests that the cell-strut mod-
ulus of rupture depends on the volume and Weibull
modulus of solid cell struts, and the prescribed survival
probability. The cell-strut modulus of rupture increases
with decreasing prescribed survival probability, rela-
tive density and cell size. In addition, the failure en-
velopes for brittle foams under multiaxial loading are
presented for various prescribed survival probabilities

and Weibull moduli. It is found that the areas contained
within the failure envelopes for brittle foam increase
with decreasing prescribed survival probability. The
failure stresses for brittle foams with a smaller Weibull
modulus will scatter more widely than those with a
larger Weibull modulus. Meanwhile, cell size effect is
significant for brittle crushing and fast brittle fracture
in brittle foams. The failure stresses for brittle crushing
increase with decreasing cell size. The failure stresses
for fast brittle fracture decrease with increasing cell size
if the Weibull modulus,m, of the cell strut material is
less than 6; ifm= 6, there is no cell size effect; and
if m is larger than 6, the failure stresses increase with
increasing cell size.
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